CMC A-net surfaces in three dimensional Heisenberg group
نویسندگان
چکیده
منابع مشابه
Translation invariant surfaces in the 3-dimensional Heisenberg group
In this paper, we study translation invariant surfaces in the 3-dimensional Heisenberg group $rm Nil_3$. In particular, we completely classify translation invariant surfaces in $rm Nil_3$ whose position vector $x$ satisfies the equation $Delta x = Ax$, where $Delta$ is the Laplacian operator of the surface and $A$ is a $3 times 3$-real matrix.
متن کاملMinimal Surfaces in the Heisenberg Group
We investigate the minimal surface problem in the three dimensional Heisenberg group, H , equipped with its standard Carnot-Carathéodory metric. Using a particular surface measure, we characterize minimal surfaces in terms of a sub-elliptic partial differential equation and prove an existence result for the Plateau problem in this setting. Further, we provide a link between our minimal surfaces...
متن کاملCmc Surfaces In
This paper presents a unified treatment of constant mean curvature (CMC) surfaces in the simply-connected 3-dimensional space forms R 3 , S 3 and H 3 in terms of meromorphic loop Lie algebra valued 1-forms. We discuss global issues such as period problems and asymptotic behaviour involved in the construction of CMC surfaces with non-trivial topology. We prove existence of new examples of comple...
متن کاملtranslation invariant surfaces in the 3-dimensional heisenberg group
in this paper, we study translation invariant surfaces in the 3-dimensional heisenberg group $rm nil_3$. in particular, we completely classify translation invariant surfaces in $rm nil_3$ whose position vector $x$ satisfies the equation $delta x = ax$, where $delta$ is the laplacian operator of the surface and $a$ is a $3 times 3$-real matrix.
متن کاملMinimal Surfaces and Harmonic Functions in the Heisenberg Group
We study the blow-up of H-perimeter minimizing sets in the Heisenberg group H, n ≥ 2. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Trends in Mathematical Science
سال: 2018
ISSN: 2147-5520
DOI: 10.20852/ntmsci.2018.258